lunes, 20 de junio de 2011

DISEÑO DE MOTOR DE DOS VELOCIDADES CON PARO PRIORITARIO Y ARRANQUE EN VELOCIDAD 1

CONTACTOR

RELE

RELE DE ESTADO SOLIDO
VENTAJAS  
·         Conexión con o sin función de paso por cero
·         Gran resistencia a choques y vibraciones
·         No ocasionan arcos ni rebotes al no existir partes móviles.
·         Vida de trabajo óptima
·         Facilidad de mantenimiento

DESVENTAJAS
·         Circuito de entrada muy sensible a perturbaciones
·         Necesidad de elementos de protección externos
·         Disipadores de calor
·         Redes de protección
·         Muy sensibles a la temperatura y a las sobretensiones
·         Tecnológica y conceptualmente más complejos y abstractos

RELÉ TERMOMAGNETICO



FUNCIONAMIENTO
La protección  contra sobrecargas o diferida se realiza por medio de un sistema idéntico al de los relés térmicos, es decir a través de un bimetal que acciona unos contactos auxiliares. Para la protección contra cortocircuitos, que es instantánea, cuentan con una bobina, a través de la cual circula la corriente del circuito de potencia, y un núcleo móvil, el cual acciona los contactos auxiliares.



RELE ELECTROMAGNETICO




FUNCIONAMIENTO
Se aplica un bajo voltaje, la corriente generada en la bobina imanta el núcleo y atrae al brazo móvil venciendo la resistencia del resorte por lo que los contactos se unen y se cierra el circuito de alto voltaje, cuando cesa la aplicación de voltaje a la bobina el resorte separará los contactos por lo que el circuito quedará interrumpido.

martes, 14 de junio de 2011

SENSORES


SENSOR INDUCTIVO
Los sensores inductivos son una clase especial de sensores que sirven para detectar materiales metálicos ferrosos. Son de gran utilización en la industria, tanto para aplicaciones de posicionamiento como para detectar la presencia o ausencia de objetos metálicos en un determinado contexto: detección de paso, de atasco, de codificación y de conteo
Este tipo de sensores se basa en la variación de la inductancia mutua entre un primario y cada uno de los dos secundarios al desplazar el núcleo. La denominación LVDT viene de Linear Variable Diferencial Transformer.
Aunque este dispositivo cambia la impedancia mutua, la salida es una tensión alterna modulada, no un cambio de impedancia. Tiene como limitaciones que en el centro la inductancia mutua no se anula, por deficiencias en el proceso de construcción. Además existe la presencia de armónicos en la salida.
SENSOR CAPACITIVO

Desde el punto de vista puramente teórico, se dice que el sensor está formado por un oscilador cuya capacidad la forman un electrodo interno (parte del propio sensor) y otro externo (constituido por una pieza conectada a masa). El electrodo externo puede estar realizado de dos modo diferentes; en algunas aplicaciones dicho electrodo es el propio objeto a sensar, previamente conectado a masa; entonces la capacidad en cuestión variará en función de la distancia que hay entre el sensor y el objeto. En cambio, en otras aplicaciones se coloca una masa fija y, entonces, el cuerpo a detectar utilizado como dieléctrico se introduce entre la masa. y la placa activa, modificando así las características del condensador equivalente.

Aplicaciones

Estos sensores se emplean para la identificación de objetos, para funciones contadoras y para toda clase de controles de nivel de carga de materiales sólidos o líquidos. También son utilizados para muchos dispositivos con pantalla táctil, como teléfonos móviles, ya que el sensor percibe la pequeña diferencia de potencial entre membranas de los dedos eléctricamente polarizados de una persona.
Los sensores capacitivos funcionan de manera opuesta a los inductivos, a medida que el objetivo se acerca al sensor capacitivo las oscilaciones aumentan hasta llegar a un nivel limite lo que activa el circuito disparador que a su vez  cambia el estado del switch.
PRINCIPIO DE FUNCIONAMIENTO: Consta de una sonda situada en la parte posterior de la cara del sensor el cual es una placa condensadora. Al aplicar corriente al sensor, se genera un campo electrostático que reacciona a los cambios de la capacitancia causados por la presencia de un objeto. Cuando el objeto se encuentra fuera del campo electrostático, el oscilador permanece inactivo, pero cuando el objeto se aproxima, se desarrolla un acoplamiento capacitivo entre éste y la sonda capacitiva. Cuando la capacitancia alcanza un límite especificado, el oscilador se activa, lo cual dispara el circuito de encendido y apagado.
Aplicaciones
Detección de nivel de aceite, agua, PVC, colorantes, harina, azúcar, leche en polvo, posicionamiento de cintas transportadoras, detección de bobinas de papel, conteo de piezas metálicas y no metálicas, entre otros
Una de sus aplicaciones; seria la detección de nivel de aceite, agua, PVC, colorantes, harina.
SENSOR FOTOELÉCTRICO
Un sensor fotoeléctrico es un dispositivo electrónico que responde al cambio en la intensidad de la luz. Estos sensores requieren de un componente emisor que genera la luz, y un componente receptor que “ve” la luz generada por el emisor. Todos los diferentes modos de sensado se basan en este principio de funcionamiento. Están diseñados especialmente para la detección, clasificación y posicionado de objetos; la detección de formas, colores y diferencias de superficie, incluso bajo condiciones ambientales extremas.
Los sensores de luz se usan para detectar el nivel de luz y producir una señal de salida representativa respecto a la cantidad de luz detectada. Un sensor de luz incluye un transductor fotoeléctrico para convertir la luz a una señal eléctrica y puede incluir electrónica para condicionamiento de la señal, compensación y formateo de la señal de salida.
El sensor de luz más común es el LDR -Light Dependant Resistor o Resistor dependiente de la luz-.Un LDR es básicamente un resistor que cambia su resistencia cuando cambia la intensidad de la luz. Existen tres tipos de sensores fotoeléctricos, los sensores por barrera de luz, reflexión sobre espejo o reflexión sobre objetos

TIPOS DE SENSORES

BARRERA DE LUZ

Las barreras tipo emisor-receptor están compuestas de dos partes, un componente que emite el haz de luz, y otro componente que lo recibe. Se establece un área de detección donde el objeto a detectar es reconocido cuando el mismo interrumpe el haz de luz. Debido a que el modo de operación de esta clase de sensores se basa en la interrupción del haz de luz, la detección no se ve afectada por el color, la textura o el brillo del objeto a detectar. Estos sensores operan de una manera precisa cuando el emisor y el receptor se encuentran alineados. Esto se debe a que la luz emitida siempre tiende a alejarse del centro de la trayectoria
SENSOR TIPO AUTO_REFLEX
La luz infrarroja viaja en línea recta y en el momento que se interpone un objeto el haz de luz rebota contra este y cambia de dirección permitiendo que la luz sea enviada al receptor y el alentó sea sensado. Un objeto de color negro no es detectado ya que este absorbe la luz y el sensor no experimenta cambio.

SENSOR TIPO REFLEX
Tiene componentes emisores y componentes receptores en un solo cuerpo, el haz de luz se establece mediante la utilización de un reflector catadióptrico el objeto es detectado cuando el haz formado entre el componente emisor, el reflector y el componente receptor es interrumpido.  Debido  a esto la detección no es afectada por el color del emisor.
La ventaja de las berreras reflectabas es que el cableado es en un solo lado, a diferencia de las barreras emisoras, receptoras que es ambos lados.
SENSOR FINAL DE CARRERA
Dentro de los componentes electrónicos, se encuentra el final de carrera o sensor de contacto (también conocido como "interruptor de límite") o limit switch, son dispositivos eléctricos, neumáticos o mecánicos situados al final del recorrido de un elemento móvil, como por ejemplo una cinta transportadora, con el objetivo de enviar señales que puedan modificar el estado de un circuito. Internamente pueden contener interruptores normalmente abiertos (NA o NO en inglés), cerrados (NC) o conmutadores dependiendo de la operación que cumplan al ser accionados, de ahí la gran variedad de finales de carrera que existen en mercado.
Generalmente estos sensores están compuestos por dos partes: un cuerpo donde se encuentran los contactos y una cabeza que detecta el movimiento. Su uso es muy diverso, empleándose, en general, en todas las máquinas que tengan un movimiento rectilíneo de ida y vuelta o sigan una trayectoria fija, es decir, aquellas que realicen una carrera o recorrido fijo, como por ejemplo ascensores, montacargas, robots, etc.

Funcionamiento

Estos sensores tienen dos tipos de funcionamiento: modo positivo y modo negativo. En el modo positivo el sensor se activa cuando el elemento a controlar tiene una tara que hace que el eje se eleve y conecte el contacto móvil con el contacto NC. Cuando el muelle (resorte de presión) se rompe el sensor se queda desconectado. El modo negativo es la inversa del modo anterior, cuando el objeto controlado tiene un saliente que empuje el eje hacia abajo, forzando el resorte de copa y haciendo que se cierre el circuito. En este modo cuando el muelle falla y se rompe permanece activado.


Interruptores final de carrera Sensores de Control ofrece la línea de interruptores de precisión de acción rápida más avanzada del mundo para una amplia gama de aplicaciones.
Para la elección de un sensor inductivo se deben tener en cuenta las características que el fabricante nos proporciona.
Características generales de los sensores
El transductor ideal sería aquel en que la relación entre la magnitud de entrada y la magnitud de salida fuese proporcional y de respuesta instantánea e idéntica para todos los elementos de un mismo tipo.
Sin embargo, la respuesta real de los transductores nunca es del todo lineal, tiene un rango limitado de validez, suele estar afectada por perturbaciones del entorno exterior y tiene un cierto retardo en la respuesta.
Las características de los transductores se pueden agrupar en dos grandes bloques:
Características estáticas, que describen la actuación del sensor en régimen permanente o con cambios muy lentos de la variable a medir.
Características dinámicas, que describen el comportamiento del sensor en régimen
transitorio.

Rango de medida en la magnitud medida en el que puede aplicarse el sensor.
  • Precisión: es el error de medida máximo esperado.
  • Sensibilidad de un sensor: relación entre la variación de la magnitud de salida y la variación de la magnitud de entrada.
  • Resolución: mínima variación de la magnitud de entrada que puede apreciarse a la salida.
  • Rapidez de respuesta: puede ser un tiempo fijo o depender de cuánto varíe la magnitud a medir. Depende de la capacidad del sistema para seguir las variaciones de la magnitud de entrada.
  • Derivas: son otras magnitudes, aparte de la medida como magnitud de entrada, que influyen en la variable de salida. Por ejemplo, pueden ser condiciones ambientales, como la humedad, la temperatura u otras como el envejecimiento (oxidación, desgaste, etc.) del sensor.
  • Repetitividad: error esperado al repetir varias veces la misma medida.